NeurOmics website

NeurOmics website

Integrated European Project on Omics Research of
Rare Neuromuscular and Neurodegenerative Diseases
Menu
  • About
    • Coordination
    • Innovation council
    • Patient advisory council
    • Project board
    • Project ethics council
    • Scientific advisory board
    • Close
  • News
    • News & events
      • Annual project reports
      • Newsletter
      • Draft of EU data protection regulation
    • Close
  • Diseases
    • Disease overview
      • Ataxia
      • Congenital muscular dystrophy
      • Congenital myasthenic syndrome
      • Fronto-temporal lobe dementia
      • Hereditary motor neuropathies – Charcot-Marie-Tooth disease
    •  
      • Hereditary spastic paraplegias
      • Huntington’s disease
      • Muscular channelopathy
      • Muscular dystrophy
      • Spinal muscular atrophy – Lower motor neuron disease
    • Close
  • Workpackages
    • Workpackages
      • 1 – Deep phenotype analysis in pre-symptomatic and symptomatic NDD/NMD patients
      • 2 – Identification of novel disease genes in NDD/NMD patients
      • 3 – Identification of modifying factors in cohorts enriched by deep phenotyping
      • 4 – Identification of hypothesis-driven biomarkers for disease progression
      • 5 – Development and implementation of disease group overlapping NGS-based diagnostic panels
      • 6 – Diagnostic read outs for predicting disease modification
      • 7 – Omics-based biomarkers for progression and therapy monitoring related to disease pathways
    •  
      • 8 – Bioinformatic tools for diagnostic prediction
      • 9 – Omics-assisted therapy development
      • 10 – Elucidation of pathogenesis and monitoring of treatment
      • 11 – Modifier gene identification, prioritization and study
      • 12 – Impact and communication
      • 13 – Research infrastructure
      • 14 – Project Management
    • Close
  • Partners
    • Project partners
      • Agilent Technologies
      • Ariadne Diagnostics, LLC
      • Bio-Prodict
      • Cambridge University
      • deCODE genetics
      • German Center for Neurodegenerative Diseases (DZNE)
      • Institut National de la Santé et de la Recherche Médicale
    •  
      • Leiden University Medical Center – LUMC
      • Newcastle University
      • Profilomic
      • Universitätsklinikum Freiburg
      • Universite d’Aix Marseille
      • University College London – ICH
      • University College London – IoN
    •  
      • University College London – MRC
      • University Hospital Cologne
      • University of Antwerp – CDE
      • University of Ferrara
      • University of Milan
      • University of Tübingen
      • University of Western Australia
    • Close
  • Publication highlights
    • Publication highlights
      • 229th ENMC international workshop: Limb girdle muscular dystrophies – nomenclature and reformed classification, 17-19 March 2017, Naarden, The Netherlands

        Volker Straub, Alexander Murphy, Bjarne Udd


        Tracking disease progression non‐invasively in Duchenne and Becker muscular dystrophies

        Pietro Spitali, Kristina Hettne, Roula Tsonaka, Mohammed Charrout, Janneke van den Bergen, Zaïda Koeks, Hermien E. Kan, Melissa T. Hooijmans, Andreas Roos, Volker Straub, Francesco Muntoni,
        Cristina Al‐Khalili‐Szigyarto, Marleen J.A. Koel‐Simmelink, Charlotte E. Teunissen, Hanns Lochmüller, Erik H. Niks, Annemieke Aartsma‐Rus


        Survival in patients with spinocerebellar ataxia types 1, 2, 3, and 6 (EUROSCA): a longitudinal cohort study

        Alhassane Diallo, Heike Jacobi, Arron Cook, Robyn Labrum, Prof Alexandra Durr, Prof Alexis Brice, Perrine Charles, Cecilia Marelli, Caterina Mariotti, Lorenzo Nanetti, Marta Panzeri, Maria Rakowicz, Anna Sobanska, Anna Sulek, Tanja Schmitz-Hübsch, Ludger Schöls, Holger Hengel, Prof Bela Melegh, Prof Alessandro Filla, Antonella Antenora, Jon Infante, Prof José Berciano, Bart P van de Warrenburg, Dagmar Timmann, Sylvia Boesch, Prof Massimo Pandolfo, Prof Jörg B Schulz, Peter Bauer, Paola Giunti, Jun-Suk Kang, Prof Thomas Klockgether, Sophie Tezenas du Montcel


        Recessive variants of MuSK are associated with late onset CMS and predominant limb girdle weakness

        David Owen, Ana Töpf, Veeramani Preethish‐Kumar, Paolo José Lorenzoni, Bas Vroling, Rosana Herminia Scola, Elza Dias‐Tosta, Argemiro Geraldo, Kiran Polavarapu, Saraswati Nashi, Daniel Cox, Teresinha Evangelista, John Dawson, Rachel Thompson, Jan Senderek, Steven Laurie, Sergi Beltran, Marta Gut, Ivo Gut, Atchayaram Nalini, Hanns Lochmüller


        RD-Connect, NeurOmics and EURenOmics: collaborative European initiative for rare diseases

        Hanns Lochmüller, Dorota M. Badowska, Rachel Thompson, Nine V. Knoers, Annemieke Aartsma-Rus, Ivo Gut, Libby Wood, Tina Harmuth, Andre Durudas, Holm Graessner, Franz Schaefer, Olaf Riess, RD-Connect consortium, NeurOmics consortium & EURenOmics consortium


        The Beta-Adrenergic Agonist Salbutamol Modulates Neuromuscular Junction Formation in Zebrafish Models of Human Myasthenic Syndromes

        Grace McMacken, Dan Cox, Andreas Roos, Juliane Müller, Roger Whittaker, Hanns Lochmüller


        Rare non-synonymous variants in SORT1 are associated with increased risk for frontotemporal dementia

        Stéphanie Philtjens, Sara Van Mossevelde, Julie van der Zee, Eline Wauters, Lubina Dillen, Mathieu Vandenbulcke, Rik Vandenberghe, Adrian Ivanoiu, Anne Sieben, Christiana Willems, Luisa Benussi, Roberta Ghidoni, Giuliano Binetti, Barbara Borroni, Alessandro Padovani, Pau Pastor, Monica Diez-Fairen, Miquel Aguilar, Alexandre de Mendonça, Gabriel Miltenberger-Miltényi, Isabel Hernández, Merce Boada, Agustín Ruiz, Benedetta Nacmiass, Sandro Sorbi, Maria Rosário Almeida, Isabel Santana, Jordi Clarimón, Alberto Lleó, Giovanni B. Frisoni, Raquel Sanchez-Valle, Albert Lladó, Estrella Gómez-Tortosa, Ellen Gelpi, Marleen Van den Broeck, Karin Peeters, Patrick Cras, Peter P. De Deyn, Sebastiaan Engelborghs, Marc Cruts, Christine Van


        PFN2 and GAMT as common molecular determinants of axonal Charcot-Marie-Tooth disease

        Manisha Juneja, Abdelkrim Azmi, Jonathan Baets, Andreas Roos, Matthew J Jennings, Paola Saveri, Chiara Pisciotta, Nathalie Bernard-Marissal, Bernard L Schneider, Catherine Verfaillie, Roman Chrast, Pavel Seeman, Angelika F Hahn, Peter de Jonghe, Stuart Maudsley, Rita Horvath, Davide Pareyson, Vincent Timmerman


        Cross-sectional serum metabolomic study of multiple forms of muscular dystrophy

        Pietro Spitali, Kristina Hettne, Roula Tsonaka, Ekrem Sabir, Alexandre Seyer, Jesse B.A. Hemerik, Jelle J. Goeman, Esther Picillo, Manuela Ergoli, Luisa Politano, Annemieke Aartsma-Rus


        Harmonising phenomics information for a better interoperability in the rare disease field

        Sylvie Maiellaa, Annie Olrya, Marc Hanauera, Valérie Lanneaua, Halima Lourghia, Bruno Donadillea, Charlotte Rodwella, Sebastian Köhlerc, Dominik Seelowc, Simon Juppe, Helen Parkinsone, Tudor Grozaf, Michael Brudnod, Peter N. Robinsonb, Ana Ratha


    • Close
  • Omics Data
  • Privacy policy
    • Close
    • Contact us

      Please use the form below to get in
      touch and we will try to answer
      your question.

      Please note that this is a research
      project and as such we are unable
      to answer questions about individual
      conditions or people.

      Once we respond to you we will delete the information about you from our systems. This will take a minimum of one week as this website is backed up on a roling basis.

      Please wait...
    • Close

Muscular channelopathy

Periodic paralysis with progressive myopathy and inherited myotonias and paramyotonias are important neuromuscular disease and muscle channelopathies. To date genetic defects in voltage-gated ion channel genes are known to be responsible for many of these diseases. Mutations in sodium [SCN4A], chloride [CLCN-1], calcium [CACNA1S] and potassium [KCNJ2/KCNJ18] channel genes usually cause significant stiffness, weakness and neurological disability, but these genes only account for 65% of cases. Without accurate genetic diagnosis patients may not receive the appropriate clinical management or genetic counselling. Furthermore, there is significant potential for orphan drug development and trials provided accurate genotyped patient cohorts are established.

There is currently limited diagnostic genetic testing for patients; typically by Sanger sequencing, of certain regions of known channel genes. There is now significant opportunity to employ high throughput exome sequencing to cover the entirety of all known genes and to develop this into a rapid diagnostic test to increase numbers of genotyped patients and therefore allow deep clinical phenotyping and treatment response assessment. In addition, using a whole exome approach, and muscle channel gene targeted filtering bioinformatics, there is significant potential to identify new causative genes rapidly.

There is significant overlap in muscle with the brain channelopathies and disorders such as episodic ataxia, hemiplegic migraine and paroxysmal kinesigenic dyskinesia that are caused by defects in the KCNA1, CACNA1A and PRRT2 genes. In the same way as the muscle channelopathy cases we are also exome sequencing the brain channelopathy patients and families with the intension to functionally study the likely channel defects identified.

Please contact us if you wish to include any patients or families in the exome sequencing research.

Director of the MRC Centre for Neuromuscular Diseases: Prof Mike Hanna

Laboratory and Exome sequencing: Prof Henry Houlden

Disease coordinator

Mike Hanna

Mike Hanna
RDConnect_footer-160x26

IRDiRC Logo

 
     

The NeurOmics project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no 2012-305121.

 
   

Copyright © 2022 · Dynamik-Gen On Genesis Framework · WordPress · Log in

This site uses cookies - Find out more -